Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus).

نویسندگان

  • Wladyslaw Polcyn
  • Robert Luciński
چکیده

Induction, energy gain, effect on growth, and interaction of nitrate and nitrite reduction of Bradyrhizobium sp. (Lupinus) USDA 3045 were characterized. Both nitrate and nitrite were reduced in air, although nitrite reduction was insensitive to ammonium inhibition. Anaerobic reduction of both ions was shown to be linked with energy conservation. A dissimilatory ammonification process was detected, which has not been reported in rhizobia so far. Nevertheless, anaerobic conversion of nitrate to ammonium was lower than 40%, which suggests the presence of an additional, nitrite reductase of denitrifying type. Nitrite toxicity caused a non-linear relationship between biomass produced and >2 mM concentrations of each N oxyanion consumed. At > or =5 mM initial concentrations of nitrate, a stoichiometric nitrite accumulation occurred and nitrite remained in the medium. This suggests an inhibition of nitrite reductase activity by nitrate, presumably due to competition with nitrate reductase for electron donors. Lowering of growth temperature almost completely diminished nitrite accumulation and enabled consumption as high as 10 mM nitrate, which confirms such a conclusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrate-related down-regulation of respiratory nitrate reductase from Bradyrhizobium sp. (Lupinus).

Previously, we showed that anaerobic induction of respiratory nitrate reductase (NR) activity in Bradyrhizobium sp. (Lupinus) USDA 3045 is strongly enhanced by nitrate or nitrite through de novo synthesis. Here, multiple NR-active soluble forms, ranging from 75 kDa to 190 kDa, were observed under anaerobic conditions. Electrophoretic activity band patterns differed depending on the level and th...

متن کامل

Nitrate Effect on Nitrogen Fixation (Acetylene Reduction): ACTIVITIES OF LEGUME ROOT NODULES INDUCED BY RHIZOBIA WITH VARIED NITRATE REDUCTASE ACTIVITIES.

The effect of nitrate on symbiotic nitrogen fixation by root nodules of cowpea (Vigna unguiculata L., Walp., cv. California Blackeye) and lupine (Lupinus augustifolius L., cv. Frost) plants inoculated with nitrate reductase-expressing and nitrate reductase-nonexpressing Rhizobium strains were examined. Nitrate reductase of Rhizobium bacteroids in the nodules of cowpea and lupine reduced nitrate...

متن کامل

Putative porin of Bradyrhizobium sp. (Lupinus) bacteroids induced by glyphosate.

Application of glyphosate (N-[phosphonomethyl] glycine) to Bradyrhizobium sp. (Lupinus)-nodulated lupin plants caused modifications in the protein pattern of bacteroids. The most significant change was the presence of a 44-kDa polypeptide in bacteroids from plants treated with the higher doses of glyphosate employed (5 and 10 mM). The polypeptide has been characterized by the amino acid sequenc...

متن کامل

Denitrification by a soil bacterium with phthalate and other aromatic compounds as substrates.

A soil bacterium, Pseudomonas sp. strain P136, was isolated by selective enrichment for anaerobic utilization of o-phthalate through nitrate respiration. o-Phthalate, m-phthalate, p-phthalate, benzoate, cyclohex-1-ene-carboxylate, and cyclohex-3-ene-carboxylate were utilized by this strain under both aerobic and anaerobic conditions. m-Hydroxybenzoate and p-hydroxybenzoate were utilized only un...

متن کامل

Nitrate-dependent anaerobic carbon monoxide oxidation by aerobic CO-oxidizing bacteria.

Two dissimilatory nitrate-reducing (Burkholderia xenovorans LB400 and Xanthobacter sp. str. COX) and two denitrifying isolates (Stappia aggregata IAM 12614 and Bradyrhizobium sp. str. CPP), previously characterized as aerobic CO oxidizers, consumed CO at ecologically relevant levels (<100 ppm) under anaerobic conditions in the presence, but not absence, of nitrate. None of the isolates were abl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology letters

دوره 226 2  شماره 

صفحات  -

تاریخ انتشار 2003